A few control issues in warehouse-scale computing

john wilkes
Cloud Control Workshop, London, UK
December 2014
Design for a game on Google Compute Platform
What's so hard? BigTable

- how big should tablets (units of data) be?
- when should they be split?
- where should they be placed?
- when should compactions happen?
- how many layers of SSTables should there be?
- thread pools: how big?
- how to prioritize traffic?
- what should be cached in RAM / on flash?
- ...

What's so hard? Gmail

A sample (very short) application stack:

- Gmail ...
- uses BigTable
- which uses Colossus (GFS v2)
- which uses D (disk server)

all rely on cluster manager, Chubby, network, ...

The problem

high utilization => resource sharing

The problem
resource sharing => interference

Interference happens tens of thousands of times per day
Our solution: CPI\(^2\)
a simple control system

1. Monitor *Cycles Per Instruction* (CPI)
2. Learn anomalous behaviors
3. Identify a likely antagonist
4. Throttle it to shield victims
Why use CPI?

- It's cheap: < 0.1% CPU overhead, invisible to users
- It's stable (across time and space)
- It correlates well with L3 cache miss rate
Gathering CPI

Build a CPI profile for a job
- per-cluster, per-platform
- mean (μ) & stddev (σ)

![Histogram with CPI values and standard deviations]

- μ (mean)
- $\mu + \sigma$ (one standard deviation)
- $\mu + 2\sigma$ (two standard deviations)
- $\mu + 3\sigma$ (three standard deviations)

Outliers => victims
Gathering CPI

CPI sample-aggregator

machines
Gathering CPI

- **Cluster scheduler**
- **CPI sample-aggregator**

CPI samples are smoothed, averaged, and CPI_spec. They are collected from multiple machines, each with agents and tasks.
Using CPI to detect an anomaly

cluster scheduler

CPI sample-aggregator

CPI_specs

machines
Using CPI to detect an anomaly
Now what?
Goal: reduce the effect of the antagonist

Let’s **throttle** the antagonist!
 - CPU hard-capping: 0.1 core for 5 minutes

Restrictions:
 - only throttle batch jobs
 - only help “important” victims
A motivating example

[Graph showing CPI and CPU usage with a labeled throttling period]

throttling period
What could possibly go wrong?
A not so good example

throttling periods
Maybe batch-only was a bad idea?
After all: LS tasks have load balancing

A control system to achieve:
 ● failure tolerance (of server, of cluster)
 ● equal load (e.g., qps)
 ● equal performance (e.g., latency)
Maybe batch-only was a bad idea? After all: LS tasks have *load balancing*.
Overload
What does your system do?

Tip: don’t send all traffic to the first place on your list
Maybe batch-only was a bad idea? After all: LS tasks have load balancing

Cascading failures

1. Overload-induced outage
 ○ busy cluster => oops

2. No worries! Shunt load elsewhere!
 ○ busy cluster => much oops (repeat)
 ○ e.g., Gmail outage, 2009-02-24
Maybe batch-only was a bad idea? After all: LS tasks have load balancing
Interacting control loops

1. Load-placement
 ● few-second response times

2. Number-of-workers
 ● few tens-of-seconds response times

3. Add a little signalling delay ...
Auto-scaling to meet a job deadline

Number of workers present

Time

Ideal
Auto-scaling to meet a job deadline

not ideal
Model building is hard

CPU, RAM usage
(arbitrary units)
No worries!
Just add a few more knobs ...
GMail circa 2008

Image source: Hareesh Nagarajan
Upload malformed configuration
What does your system do?

Tip: don’t just stop working
The scariest outage ever
15-20% of Google's production fleet was affected

```
umask 027

mkdir -p -m 0755 $release/usr/bin
```

“The scariest outage ever”

Photo credit: Alex E. Proimos Creative Commons
What happens when the monitoring stops working?
It’s 3am and your pager goes off
-- are we in trouble?
-- are we about to get into trouble?

→ what should you do about it?
Delegation is hard
be careful what you ask for
Summary
Control systems do not run in isolation

1. Do no harm

2. Make things better

3. Assume the world is out to get you
 “any sufficiently advanced incompetence is indistinguishable from malice”

 -- Grey's Law