A few control issues in warehouse-scale computing

john wilkes *Cloud Control Workshop, London, UK* December 2014

Design for a game on Google Compute Platform

What's so hard? BigTable

- how big should tablets (units of data) be?
- when should they be split?
- where should they be placed?
- when should compactions happen?
- how many layers of SSTables should there be?
- thread pools: how big?
- how to prioritize traffic?
- what should be cached in RAM / on flash?

• ...

What's so hard? Gmail

A sample (very short) application stack:

- Gmail ...
- uses BigTable
- which uses Colossus (GFS v2)
- which uses D (disk server)

all rely on cluster manager, Chubby, network,

The problemFrom: CPI²: CPU performance isolation for
shared compute clusters. EuroSys'13.high utilization => resource sharing

The problem resource sharing => interference

Our solution: CPI² a simple control system

- 1. Monitor Cycles Per Instruction (CPI)
- 2. Learn anomalous behaviors
- 3. Identify a likely antagonist
- 4. Throttle it to shield victims

Why use CPI?

- It's cheap: < 0.1%
 CPU overhead,
 invisible to users
- It's stable (across time and space)
- It correlates well with L3 cache miss rate

Gathering CPI

Build a CPI profile for a job

- per-cluster, per-platform
- mean (μ) & stddev (σ)

Gathering CPI

Gathering CPI

machines

Using CPI to detect an anomaly

Using CPI to detect an anomaly

Now what?

Goal: reduce the effect of the antagonist

Let's **throttle** the antagonist!

• CPU hard-capping: 0.1 core for 5 minutes

Restrictions:

- only throttle batch jobs
- only help "important" victims

A motivating example

What could possibly go wrong?

A not so good example

Maybe batch-only was a bad idea? After all: LS tasks have *load balancing*

A control system to achieve:

- failure tolerance (of server, of cluster)
- equal load (e.g., qps)
- equal performance (e.g., latency)

Maybe batch-only was a bad idea? After all: LS tasks have *load balancing*

Overload What does <u>your</u> system do?

Tip: don't send all traffic to the first place on your list

Maybe batch-only was a bad idea? After all: LS tasks have *load balancing*

Cascading failures

- 1. Overload-induced outage
 - busy cluster => oops

2. No worries! Shunt load elsewhere!

- busy cluster => much oops (repeat)
- e.g., Gmail outage, 2009-02-24

Maybe batch-only was a bad idea? After all: LS tasks have *load balancing*

Interacting control loops

- 1. Load-placement
 - few-second response times
- 2. Number-of-workers
 - few tens-of-seconds response times
- 3. Add a little signalling delay ...

Auto-scaling to meet a job deadline

Auto-scaling to meet a job deadline

Number of workers present

Model building is hard

CPU, RAM usage (arbitrary units)

Load

No worries! Just add a few more knobs ...

Upload malformed configuration What does <u>your</u> system do?

Tip: don't just stop working

umask 027 mkdir -p -m 0755 \$release/usr/bin

"The scariest outage ever" 15-20% of Google's production fleet was affected

Photo credit: <u>Alex E. Proimos</u> <u>Creative Commons</u>

It's 3am and your pager goes off-- are we in trouble?-- are we about to get into trouble?

→ what should you do about it?

Delegation is hard be careful what you ask for

Summary Control systems do not run in isolation

- 1. Do no harm
- 2. Make things better

3. Assume the world is out to get you

"any sufficiently advanced incompetence is indistinguishable from malice"

-- Grey's Law